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Errata and addenda on page 24
conceptual modeling vs. numerical modeling is the assumption of incompressibility. This is clearly a conceptual modeling assumption. Is it the code builder’s fault, or any criticism of a commericial code itself, if the user incorrectly applies it? For example, dynamic stall of helicopter rotor blades involves compressibility at a surprisingly low free-stream Mach number. Results from an incompressible code may not agree with experiment very well, but we cannot say that the code fails Validation because it was applied to compressible flow, although we may have some sympathy for the user who is fooled by dynamic stall. But no one would have sympathy for a user who applied an incompressible flow code to a reentry vehicle at Mach 20. In this example, and in many practical cases, the lack of agreement with experiment is not a code problem, but a modeling problem.


......................

Errata and addenda on page 75


We also Verified this retention of 2nd-order accuracy for very strong 1-D coordinate stretching. Using double precision calculations, we experimented with a range of stretching parameters for reasonable coordinate transformations based on hyperbolic tangent and exponential functions, and even for unreasonable transformations based on exponentials of exponentials. In the extreme case, we used a transformation of 



[image: image1.wmf]x

d

f

xi

d

d

=

+

*

-

-

-

-

x

exp

exp

exp

1

1

1

1

1

b

g

c

h

d

i

b

g

b

g


(3.5.4.1)

where
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with d1 ranging from 0 to 100. For d1 = 10, Imx = temax/n((2 reaches its asymptotic value of 225 to two significant figures at n = 257. For d1 = 100, the truncation error is 6 orders of magnitude higher than the no transformation case; nevertheless, Imx is constant to at least the first figure at n = 8193 and 16385.

...........

Errata and addenda on page 115


The idea behind the Grid Convergence Index is to approximately relate the ( of Equation 5.4.3 obtained by whatever grid convergence study is performed (whatever p and r) to the ( that would be expected from a grid convergence study of the same problem with the same fine grid using p = 2 and r = 2, i.e. a grid doubling with a 2nd-order method. The relation is based on equality of the error estimates. Given an ( from an actual grid convergence test, the GCI is derived by calculating the error estimate E1 from Equations 5.4.2–3, then calculating an equivalent ( that would produce approximately the same E1 with p = 2 and r = 2. The absolute value of that equivalent ( is the (relative error) Grid Convergence Index for the fine grid solution, which is conveniently expressed as 
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where ( is defined in Equation 5.4.3. Obviously, if the denominator of Equation 5.4.3 is small, ( should be normalized by some other characteristic quantity for the calculation (as discussed earlier) or alternately it can be evaluated as an absolute (rather than relative) quantity (i.e., without the division by f1 or any normalizing value), in which case Equation 5.6.1 produces an “absolute error” GCI.
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from Equation 5.3.4,



[image: image4.wmf]e

4

1

4

4

=

-

f

f

f


(5.6.2)

The values reported were (4 = 0.17% for wall vorticity and 0.13% for a velocity profile at a longitudinal station traversing the separation bubble. This (4 is easily related to the ( of Equation 5.4.3; combining Equations 5.3.4, 5.4.3 and 5.6.2 shows (for r = 2, p = 2, Fs = 3)
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The reported grid convergence criteria (Roache, 1982) of 0.17% for wall vorticity and 0.13% for velocity for the fine grid 2nd-order solution would now be replaced by the more conservative GCI [fine grid] = 0.51% and 0.39%.


In such cases wherein Richardson Extrapolation is actually used to produce a higher order accurate solution, rather than just to estimate the error of the 2nd-order fine grid solution, the GCI of Equation 5.6.1 (or 5.6.3b) appears to be unfairly conservative. The solution used is the (say) 4th-order accurate solution, but the reported GCI would be the same even if only the 2nd-order accurate fine grid solution were used. That is, E1 and GCI are respectively the Richardson Error Estimator and Grid Convergence Index for the fine grid 2nd-order solution, not for the 4th-order solution. Although we expect the extrapolated solution to be more accurate than the 2nd-order fine grid solution, we would need additional information (a solution on a third grid) to estimate the error of the extrapolated solution itself. Such a third grid solution could be used in principle (possibly not in practice, for difficult nonlinear problems) to extrapolate a 6th-order accurate solution. The error estimate (and therefore the GCI) will always lag the best solution estimate. This is quite conservative when the conditions for validity of Richardson Extrapolation have been convincingly demonstrated by numerical experiments (e.g. Roache, 1982; Shirazi and Truman, 1989; Blottner, 1990; Roache and Knupp, 1993). A heuristic extension for such situations (Roache, 1994) is to report the GCI for the extrapolated solution based on Equation 5.6.1 with ( replaced by (4 from Equation 5.6.2, giving (for r = 2, p = 2, and Fs = 3)
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or |ε|/3. This agrees with the reported grid convergence criteria (Roache, 1982) of 0.17% for wall vorticity and 0.13% for velocity.

Errata and addenda on page 118

The coarse-grid GCI is then 
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The last of these is easy to interpret; the error estimate for the coarse grid solution is just the error estimate for the fine grid solution, plus the difference between the solutions, which is (. The GCI difference is then Fs (.
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Errata and addenda on page 120

5.9 SHOULD THE COEFFICIENT BE “1” OR “3” OR “1.25”?


The functional form of the definition of the GCI (Equations 5.6.1. 5.7.2, 5.7.3) is rational and objective, but the coefficient Fs = 3 is a judgment call. It could arguably be “1,” or conceivably “1.5” or “2” or something else between 1 and 3.


Fs is essentially a “factor of safety,” and the value Fs = 3 is possibly too conservative. As the quality and rigor of the grid convergence study increases, so does the conservatism of using the coefficient Fs = 3 in the definition of the GCI. However, consider practical complications such as rapidly varying coefficients from turbulent eddy viscosities or strong grid stretching, subgrids that are not strictly geometrically similar, nonlinear systems, non-uniform behavior of various error metrics, experimental determination of spatially varying p (e.g., see de Vahl Davis, 1983), non-monotonic convergence (e.g., see Celik and Zhang, 1993, 1995). There can also be vagaries associated with defining r when power-law grid stretching is used (e.g., see Celik and Zhang, 1993, 1995), when regions are partitioned geometrically (as in Domain Decomposition or multi-block grid generation methods) giving non-smooth spatially varying r, and the surprisingly common practice of using rx ( ry. Such complications, while not necessarily contradicting the ultimate applicability of Richardson Extrapolation (i.e., in the asymptotic range), do increase the uncertainty associated with the error estimate for practical engineering calculations. Likewise, if the grid convergence exercise is only performed for a representative “nearby” problem, uncertainty is increased. (See Cosner, 1995 for experienced testimony that “nearby” problems adequate to predict grid resolution requirements can be difficult to find.) Also, see discussion in Westerink and Roache (1995) and in Chapter 6 on the distinction between formal, actual asymptotic, and observed convergence rates. These considerations provide additional rationale for retaining “3” as the coefficient, in the sense of a “factor of safety,” for reporting minimal two-grid convergence results.

......................
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TABLE 5.9.1. STEADY BURGERS EQUATION SOLUTIONS DEMONSTRATING THAT Fs = 1 IS NOT USUALLY CONSERVATIVE. The Richardson Error Estimator (E1) and the Grid Convergence Index (GCI) are applied to the Steady-State Burgers Equation (U Ux +Uxx / Re = 0. p = order of method. Re > 0 indicates boundary conditions of U(0) = 1, U(1) = 0, suggestive of stagnation flow. Re < 0 indicates boundary conditions of U(0) = 0, U(1) = 1. r is the grid refinement ratio = mf / mc, where mf = number of fine grid cells, mc = number of coarse grid cells. Under the heading “Behavior,” the entry “Normal” indicates the following pattern: compared to the exact solution, (a) the E1 is not conservative, i.e. |E1| > |true error|, for both the coarse and fine grid estimators; and (b) the GCI is conservative, i.e. GCI < |true error| for both the coarse and fine grids.

.................
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the GCI’s. The more general procedure is to solve the equation
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(5.10.6.3)

for p. This is simple for r constant (not necessarily 2 or integer), giving 
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But if r is not constant during the grid refinement, Equation (5.10.6.3) is transcendental in p. Usual solution techniques can be applied, e.g., direct substitution iteration, Newton-Raphson,

Errata and addenda on page 132

the iteration equation is 
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(5.10.6.5b)

Note this form of the iteration gives the exact answer in one step for the case of r = constant and ω = 0.


Once p is known with some confidence, one may predict the next level of grid refinement r* necessary to achieve a target accuracy, expressed as a target Error Estimate E1 or GCI1, call it GCI*. With GCI23 being the value from Equation (5.6.1) for the previous two grids, 
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Errata and addenda on page 161

Second half of the table, at the the entry for the middle row.

104
0.8047

......

65
0.5000

......

31
0.2344

......

Errata and addenda on page 162

6.8 A k-( MODEL OF A FREE SHEAR LAYER


In the same paper, Pelletier and Ignat (1995) developed a simple analytical solution for an incompressible free shear layer using the k-( turbulence model. As in the previous section, they used this solution to compare their Zhu-Zienkiewicz type error indicators with the GCI extended to unstructured grids. (See details in the original paper.) The solution should be of considerable interest for turbulence modelers, since it displays most of the characteristics of an experiment of Patel (1973) yet is convenient to encode. Likewise, they developed analytical Benchmarks for variants of the k-( model, the k-τ model and for the Wilcox (1993) k-( model and variants.
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Errata and addenda on page 239
Such problems are usually described as “convection dominated” when the parameter range is such that Re, the Reynolds number (or more generally, the Peclet number) is large, Re >> 1, since this parameter multiplies the convection derivative. However, for this steady equation, convection never dominates diffusion. In fact, both convection and diffusion are everywhere in perfect balance, the convection term Re ux being exactly equal to the diffusion term uxx. (If we tried to define the convection term as being ux rather than Re ux we would find that the diffusion term uxx is dominant, by the factor Re.) The more appropriate term is simply “high Reynolds number flow.”

8.1.2 The Effect of Space-Time Truncation Term Cancellation and Superconvergence 


It is a common feature ...
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